气吉美食网
您的当前位置:首页小学四年级数学下册《图形的运动》教案(3篇)

小学四年级数学下册《图形的运动》教案(3篇)

来源:气吉美食网

小学四年级数学下册《图形的运动》教案

  教学目标:

  1 、对日常生活中的现象进行观察和思考,引导学生从中发现特殊规律,使学生掌握用列表的方法来解决“鸡兔同笼”的问题。

  2 、从不同的角度分析问题,掌握解题的策略与方法,从而感受到数学思想的运用和解决实际问题的联系。

  3 、培养学生分析问题的能力,渗透假设的数学思想,在解题中数形结合,提高学生对数据的再认识,再分析,将列表的过程更优化。

  教学重点:从不同的角度分析,掌握解题的策略与方法。

  教学流程:

  一、创设情境,明确目标

  1、谈话:“同学们,自我介绍一下,我姓周,你们可以称呼我?今天需要我们共同配合,在这里上一节数学课,为了表达谢意,我为你们带来了一些礼物,快来猜一猜,有多少?(5…)太少了?(50…)多了,(40…)少了(45…)差不多了,(46…)恭喜你,答对了,下课就由你发给同学们。

  2、喜欢数学吗?数学不但可以开阔我们的视野,增长我们的'知识,还可以锻炼我们的思维。在我国古代就有许多有趣的数学名题,你们了解吗?今天,。老师就向你们推荐一种有趣的问题------鸡兔同笼。

  二、自主探索,合作交流

  1 出示问题:“鸡兔同笼,有5个头,14条腿,鸡兔各有几只?”

  (1)你从中获取什么信息?……

  (2)请你们猜一猜将鸡、兔可能是几只?(……)

  (3)把你猜的过程给大家说一说

  (4)板书学生的过程

  鸡 1 2 3

  兔 4 3 2

  腿 18 16 14

  (4)评价:从尝试简单的开始,一个一个的试,最终找到了正确的答案,方法多么简单啊?如果我们再横竖加上几条线,就成了美观的表格。看来,列表来解决这类问题还确实简单,如果现在将鸡兔的数量增加,还能解决吗?(重点引入列表)

  2、出示:“鸡兔同笼,有20个头,54条腿,鸡兔各几只?”

  (1)自己先想一想如何利用列表来解决?

  (2)小组内交流一下自己的想法。

  (3)完成列表。

  (4)汇报想法和过程

  小组1:逐一列表------假设鸡有1只,兔子有19只,那么就有7腿,(腿多了,说明什么?兔子多了,怎么办?)鸡有2只,兔子有18只,那么就有76条腿,一只一只地试,学生把试的结果列成表格。

  通过表格引导学生观察:发现了什么?(每多一只鸡,少一只兔子,相应减少2条腿,)

  小组2:跳跃式列表------假设鸡有1只,兔子有19只,那么就有7腿,要比54条腿多的多,因此,兔子的只数也可能多了很多,但是鸡的只数可以不用一只一只依次递增,而是从猜一只到猜5只(或者其它几只),当腿的条数在50到60之间,(提出问题:兔子可能是几只?到底是谁估计的更加接近呢?)

  引导发现:这样就减少举例的次数。并通过数据的调整来优化解题策略。

  小组3:取中列表------假设鸡兔各有10只

  小组4:方程

  小组5;奥书班中学习过算术方法(让孩子清楚表达出自己的想法)

  三、适时反思,掌握策略(两题任选其一)

  “同学们,鸡兔同笼”

  1、观察三种列表的方法,比较异同?

  2、谈一谈;你们有什么感受?

  四、深化练习,拓展延伸

  1、课后练习1、2、3(比较不同-----答案是否唯一)

  2、通过今天的学习,有什么收获?

小学四年级数学下册《图形的运动》教案

  教学内容

  人教版小学数学四年级下册P17—18。

  学习目标

  1.理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。

  2.经历探索加法交换律和加法结合律的过程,培养学生的概括推理能力。

  3.获得成功的体验,增强对数学的兴趣和信心,形成思考和探究问题的意识习惯。

  学习重点:

  理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。

  学习难点:

  经历探索加法交换律和加法结合律的过程,发现并概括出运算律。

  学习准备

  课件、学习单

  学习过程

  一、创设情境,提出问题。

  1.师:暑假是外出旅游的大好时节,好多人都旅游去了,当然李叔叔也不例外,看他是怎么去的?课件出示:

  生:骑自行车。

  师:你们看的真准,再仔细看看,你从图中还了解到了哪些信息?

  生1:李叔叔准备骑车旅行一周。

  生2:李叔叔上午骑了40km,下午骑了56km。

  2.师:根据了解到的信息你能提出什么问题?

  生1:李叔叔今天一共骑了多少千米?

  生2:李叔叔今天上午比下午少骑多少千米?

  二.合作探究,解决问题。

  (一)探究加法交换律

  1.列式计算

  师:今天我们选取“李叔叔今天一共骑了多少千米”来做我们的学习材料,要解决这个问题我们应该怎么列式?

  生1:40+56(板书)

  师:还可以怎样列式?

  生2:56+40(板书)

  师:它们之间可用什么符号连接?

  生:等号。(师板书等号)

  师:为什么可以用等号连接?

  生1:因为它们的和都是96千米。

  生2:因为它们都是求的李叔叔一天行的总路程。

  2. 课件出示:

  123+377 Ο 377+123

  1124+76 Ο 76+1124

  师:这两道题,它们的算式之间的能用等号相连吗?请你算一算!

  生:能

  师:为什么?

  生:因为它们的和都相等。

  师板书:

  3. 师:观察这三个等式,你发现了什么吗?

  生:两个数相加,交换加数的位置,和不变。

  师:从刚才的发现中,你们会猜想到什么呢?

  生:是否所有的加法算式两个加数交换位置和不变呢?

  (板书: 两个数相加,交换加数的位置,和不变 ?)

  4. 师:口说无凭,你打算怎样验证咱们的猜想?

  生:我们可以再举几个例子来验证一下。

  师:那请大家拿出本子来,举几个这样例子来验证看看!

  (生举例验证)

  5. 师:谁来上台说说你是怎么举例验证的?

  生:(百以内的加法、多位数的加法、小数加法……)

  师:通过刚才这两位同学的举例,都能证明我们的发现是正确的。谁有没有发现交换加数位置和不相等的情况吗?

  生:没有。

  师:也就是说,我们举不出反例,那证明我们该刚才的发现是正确。

  师:谁能够再一次总结一下我们刚才发现的这个规律?

  生:两个数相加,交换加数的位置,和不变。

  师:旁边的问号是不是可以擦掉了?!

  师:这个规律,数学家们给它起了一个名字,叫做“加法交换律”

  (板书加法交换律)

  6.师:刚才同学们举了那么多的例子,这样的例子能举完吗?

  生:举不完。

  师:是啊,像这样的等式我们能写出很多很多来。

  (师边说便在等式的下面板书“……”)

  师:既然像这样的等式写不完,你能否开动你的脑筋,想办法用一个算式表示出所有的等式吗?试一试,把你的想法在本子上写出来。

  (学生尝试)

  7.师:谁来说一说你是用一个怎样的算式表示加法交换律的?

  生1:甲数+乙数=乙数+甲数。

  生2:△+□=□+△

  生3:a+b=b+a

  师:这三位同学的方法能表示出所有的情况吗?

  生:能。

  师:这三种方法,你更欣赏哪一种?

  生:第三种。

  师:说说你的理由。

  生:因为第三种更方便、更简洁。

  师:其实咱们的数学家想到的式子,跟生3的想法不谋而合,也是a+b=b+a。

  (师板书a+b=b+a)

  师:你觉得a 和 b可以表示哪些数?

  8.师:同学们现在回想一下,我们是怎样探索出“加法交换律”的,同桌互相交流一下。

  生1:我们是先观察发现,再举例验证,最后是总结规律。

  师:很简单明了,还有谁来说一说?

  生2:我们第一步是观察发现,我观察这三个等式,发现了任意两个数相加,它们的和不变,第二步是举例验证,我们举了好多例子,证明我们是正确的,最后一步是总结规律,总结的规律是“两个数相加,交换加数的位置,和不变”。

  师:说的好不好?把掌声送给他!

  (板书:观察发现→举例验证→总结规律。)

  9.师:我们刚才是通过观察发现,然后是举例验证,再总结规律,这是一种非常好的学习方法。刚才大家经历了一次像数学家一样做数学的过程,那你能不能用这种学习方法去探索其他的运算定律呢?

  生:能。

  (二)探究加法结合律

  1.师:现在请大家自学<学习单一》,自学之前老师给大家提供了一个学习锦囊,谁愿意大声读一遍?

  生:

  一.观察发现。

  仔细算出每一组题的结果,你发现了什么?

  二.举例验证。

  你能再举出几组这样的例子吗?

  三.总结规律。

  你能用符号表示这个运算定律吗?

  2.师:下面就请大家按照自学锦囊上的提示自学,开始。

  (生完成)

  师:完成的同学同桌交流一下。

  3.师:都完成好了吗?谁愿意到前面分享一下你的自学收获?

  生:我发现第一组算式都等于288,第二组算式都等于273,第三组算式都等于507,它们都可以用等号来连接。

  师:每一组题的两道算式的计算方法有什么不一样吗?

  生1:前一道算式都是先算前两个数的和,再和第三个数相加,后一道都是先算后两个数的和,再和第一个数相加。

  师:刚才这位同学分享了这么多自学的收获,那你还发现了什么?还其他的发现吗?

  生:我还发现这三组题,后面的题都改变了运算顺序。

  师:运算顺序改变了,那么什么没有变?

  生:和不变。

  师:还有没有什么不变?

  生:数字的位置没变,只是运算顺序变了。

  4. 师:刚才通过这三组算式发现了一个非常重要的规律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。那这个规律对不对还需要我们怎么样?

  生:举例验证。

  师:那谁来说一说你举的例子?好,你来!

  生1:(24+76)+28=24+(76+28)(师板书)

  师:谁再来分享一下你举的例子?

  生2( 8+7)+3=8+(7+3)

  师:谁再来举一个?

  生3:(325+178)+22=325+(178+22),他们都等于525.

  5.师:谢谢大家的分享。刚才,我们大家进行了举例验证,你们验证我们发现的规律对不对?

  生:对!

  师:有没有举出反例的?

  生:没有。

  师:那由此可以说明,我们该发的规律是……

  生:正确的!

  师:下面请同学们把我们发现的规律齐读一边,预备,起!

  生::三个数相加,先把前两个数相加,或者先把后两个数相加,和不变

  师:刚才发现这个重要的规律,我们把它叫做加法结合律。

  (板书:加法结合律)

  6.师:这是我们发的第二个运算定律,那你能用符号表示加法结合律吗?

  生:(a+b)+c=a+(b+c)。

  7.师:今天这节课,我们采用观察发现、猜想验证、总结规律的学习方法,发现了两种的加法运算定律,现在你还有什么不懂得、想提出来供大家研究吗?

  生:加法交换律和加法结合律有什么相同点和不同点?

  师:这个问题很有研究的价值,下面就请大家小组内交流研究,开始!

  (生小组交流,师巡视)

  师:哪一位同学到前面来分享一下你们讨论的结果?

  生1:我们小组发现的它们的相同点是都是加法,和不变;不同点是加法交换律的加数是两个数,加法结合律的加数是三个数。加法交换律是数字的位置变了,加法结合律是运算顺序变了。

  师:你们同意吗?还有和这一组不一样的吗?

  师:好的,看来其他组的同学的发现同他们是一样的,我们班的同学观察力和思考力非常强,那下面,我们就运用我们学会的本领来练一练,解决生活中的实际问题!

  三、巩固练习,拓展提高。

  1.下列等式各运用了什么运算定律?

  2.你能( )中填上适当的数吗?

  3.今天我和妈妈一起逛超市,看到体育用品柜台有下列物品:

  4. 小明在上课的时候,老师出了一道这样的题目:

  四.课堂总结。

  1.本节课你什么收获?还有什么疑问?

  2.师:同学们今天的表现非常出色,用自己善于发现的眼睛和聪明的头脑找到了加法算式中的规律,认识并理解了加法交换律和加法结合律,并能初步应用。你看,数学家能总结出来的运算定律我们也能总结出来,我相信只要我们在以后的学习中勤动脑、多动手,一定可以把数学学得更棒!

  五.板书设计

小学四年级数学下册《图形的运动》教案

  教学目标

  1、引导学生探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行

  一些简便运算。

  2、培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

  3、感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

  教材简析

  1、有关运算定律的知识相对集中,有利于学生形成比较完整的认知结构。

  2、从现实的问题情境中抽象概括出运算定律,便于学生理解和应用。

  3、重视简便计算在现实生活中的灵活应用,有利于提高学生解决实际问题的能力。

  教学重点:探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便运算

  教学难点:探索和理解加法的乘法的运算定律,会应用它们进行一些简便运算

  教学策略

  1、充分利用学生已有的感性认识,促进学习的迁移。

  2、加强数学与现实世界的联系,促进知识的理解与应用。

  3、注意体现算法多样化、个性化的数学课程改革精神,培养学生灵活、合理选择算法的能力。

因篇幅问题不能全部显示,请点此查看更多更全内容